The $R O\left(C_{2}\right)$-graded cohomology of C_{2}-surfaces

Christy Hazel
University of Oregon
March 24, 2019

Introduction to $R O(G)$-graded Cohomology

- Let G be a finite group
- G-Top
- Given a finite-dimensional, real, orthogonal G-representation V, we can form the representation sphere $S^{V}=\hat{V}$
- Have equivariant suspensions $\Sigma^{V} X=S^{V} \wedge X$
- Bredon Cohomology $H^{\alpha}(-; M)$
- $\alpha \in R O(G), M$ Mackey functor
- Have suspension isomorphisms $\tilde{H}^{\alpha}(X ; M) \cong \tilde{H}^{\alpha+V}\left(\Sigma^{V} X ; M\right)$

The case when $G=C_{2}$

- $V \cong \mathbb{R}^{p, q}=\mathbb{R}_{\text {triv }}^{p-q} \oplus \mathbb{R}_{\text {sgn }}^{q}$
- $R O\left(C_{2}\right)$-graded cohomology is a bigraded theory
- Refer to first grading as "topological dimension" and second grading as "weight"
- Write $H^{p, q}(X ; M)$ for $H^{\mathbb{R}^{p, q}}(X ; M)$
- Write $S^{p, q}$ for $S^{\mathbb{R}^{p, q}}$

- We will be considering the constant Mackey functor $\underline{\mathbb{Z} / 2}$

The cohomology of orbits in $\mathbb{Z} / 2$-coefficients

The (p, q) group is plotted in the box up and to the right of (p, q).
$\bullet=\mathbb{Z} / 2$
$\mid=\cdot \tau$
$/=\cdot \rho$

$$
\mathbb{M}_{2}=H^{*, *}(p t ; \mathbb{Z} / 2)
$$

$$
A_{0}=H^{*, *}\left(C_{2} ; \underline{\mathbb{Z} / 2}\right)
$$

The cohomology of a point in $\mathbb{Z} / 2$-coefficients

Abbreviated pictures
$\bullet=\mathbb{Z} / 2$
$\mid=\cdot \tau$
$/=\cdot \rho$

$$
\mathbb{M}_{2}=H^{*, *}(p t ; \mathbb{Z} / 2)
$$

$$
A_{0}=H^{*, *}\left(C_{2} ; \mathbb{Z} / 2\right)
$$

C_{2}-surfaces give a family of spaces to compute with

- In 2016, Dugger classified all C_{2}-surfaces up to equivariant isomorphism using equivariant surgery.

Examples:

The cohomology of non-free, non-trivial C_{2}-surfaces in $\mathbb{Z} / 2$-coefficients

- Let X be a non-trivial, non-free C_{2}-surface
- $F=\#$ isolated fixed points, $C=\#$ fixed circles,

$$
\beta=\operatorname{dim}_{\mathbb{Z} / 2} H_{\text {sing }}^{1}(X ; \mathbb{Z} / 2)
$$

Theorem (H.)
There are two cases for the cohomology of X :
(i) Suppose $C=0$. Then

$$
H^{*, *}(X ; \underline{\mathbb{Z} / 2}) \cong \mathbb{M}_{2} \oplus\left(\Sigma^{1,1} \mathbb{M}_{2}\right)^{\oplus F-2} \oplus\left(\Sigma^{1,0} A_{0}\right)^{\oplus \frac{\beta+2-F}{2}} \oplus \Sigma^{2,2} \mathbb{M}_{2}
$$

(ii) Suppose $C \neq 0$. Then

$$
\begin{aligned}
H^{*, *}(X ; \underline{\mathbb{Z} / 2}) \cong & \mathbb{M}_{2} \oplus\left(\Sigma^{1,1} \mathbb{M}_{2}\right)^{\oplus F+C-1} \oplus\left(\Sigma^{1,0} \mathbb{M}_{2}\right)^{\oplus C-1} \\
& \oplus\left(\Sigma^{1,0} A_{0}\right)^{\oplus \frac{\beta+2-(F+2 C)}{2}} \oplus \Sigma^{2,1} \mathbb{M}_{2}
\end{aligned}
$$

Return to our examples of C_{2}-surfaces

$$
F=8, \quad C=0, \quad \beta=14
$$

$$
\begin{aligned}
& H^{*, *}\left(T_{7,2}^{\text {spit }}\right) \cong \mathbb{M}_{2} \oplus\left(\Sigma^{1,1} \mathbb{M}_{2}\right)^{\oplus 6} \\
& \oplus\left(\Sigma^{1,0} A_{0}\right)^{\oplus 4} \oplus \Sigma^{2,2} \mathbb{M}_{2}
\end{aligned}
$$

Return to our examples of C_{2}-surfaces

$\mathbb{R} P_{\text {twist }}^{2}$

$$
F=1, \quad C=1, \quad \beta=1
$$
$$
H^{*, *}\left(\mathbb{R} P_{\text {twist }}^{2}\right) \cong \mathbb{M}_{2} \oplus \Sigma^{1,1} \mathbb{M}_{2} \oplus \Sigma^{2,1} \mathbb{M}_{2}
$$

Nonequivariant fundamental classes

- M is a smooth n-dimensional manifold and N is a smooth k-dimensional submanifold
- Get a class $[N] \in H^{n-k}(M ; \mathbb{Z} / 2)$
- Example:

$$
\begin{gathered}
{[C],\left[C^{\prime}\right] \in H^{1}\left(T_{1}\right) ;[x] \in H^{2}\left(T_{1}\right)} \\
{[C] \smile\left[C^{\prime}\right]=\left[C \cap C^{\prime}\right]=[x]} \\
H^{*}\left(T_{1}\right) \cong \mathbb{Z} / 2[a, b] /\left(a^{2}=b^{2}=0\right), \\
|a|=|b|=1
\end{gathered}
$$

An equivariant example

$\mathbb{M}_{2}[a, b] /\left\langle a^{2}=\rho \cdot a, b^{2}=0\right\rangle$ $|a|=(1,1), \quad|b|=(1,0)$

Equivariant fundamental classes

- X is a n-dimensional C_{2}-manifold and Y is a nonfree k-dimensional C_{2}-submanifold
- $[Y] \in H^{n-k, ? ?}(X ; \mathbb{Z} / 2)$
- Consider the equivariant normal bundle E of Y in X
- Over each fixed point $y \in Y^{C_{2}}, E_{y} \cong \mathbb{R}^{n-k, q_{y}}$
- Let q be the maximum weight appearing over $Y^{C_{2}}$

Theorem (H.)
We get a unique class $[Y] \in H^{n-k, q}(X ; \underline{\mathbb{Z} / 2})$

Example 2

$$
\begin{gathered}
{[q] \in H^{2,1}} \\
{[C] \smile[D]=\tau \cdot[q]}
\end{gathered}
$$

$\mathbb{M}_{2}[x, y] /\left(x^{2}=\tau y+\rho x, x y=y^{2}=0\right)$,

$$
|x|=(1,1),|y|=(2,1)
$$

Example 3

$T_{2,1}^{\text {spit }}$

$[C \sqcup \sigma C]_{q},[D \sqcup \sigma D]_{q} \in H^{1, q}$
$[C \sqcup \sigma C]_{r} \smile[D \sqcup \sigma D]_{s}=[z \sqcup \sigma z]_{r+s}$

Conclusions and next steps

- Have a working theory of fundamental classes with a nice intersection product

Theorem (H.)
The cohomology of all C_{2}-surfaces in $\underline{\mathbb{Z} / 2 \text {-coefficients is generated }}$ by fundamental classes.

- Can we say something similar for general C_{2}-manifolds?
- These classes were defined by proving there exists a "sort of Thom class" for C_{2}-vector bundles. Can we say more about this class?

The $R O\left(C_{2}\right)$-graded cohomology of C_{2}-surfaces

Thank you!

