Equivariant fundamental classes in $RO(C_2)$ -graded cohomology

Christy Hazel

University of Oregon

January 16, 2020

Introduction to RO(G)-graded Cohomology

- Let G be a finite group
- *G*-Top
- Given a finite-dimensional, real, orthogonal G-representation V, we can form the representation sphere $S^V = \hat{V}$
- Have equivariant suspensions $\Sigma^V X = S^V \wedge X$
- Bredon Cohomology $H^{\alpha}(-; M)$
 - $\alpha \in RO(G)$, *M* Mackey functor
 - Have suspension isomorphisms $\tilde{H}^{\alpha}(X; M) \cong \tilde{H}^{\alpha+V}(\Sigma^{V}X; M)$

The case when $G = C_2$

•
$$V \cong \mathbb{R}^{p,q} = \mathbb{R}^{p-q}_{triv} \oplus \mathbb{R}^{q}_{sgn}$$

- $RO(C_2)$ -graded cohomology is a bigraded theory
- p is the "topological dimension", q is the "weight"

•
$$H^{p,q}(X;M) := H^{\mathbb{R}^{p,q}}(X;M)$$

•
$$S^{p,q} := S^{\mathbb{R}^{p,q}}$$

• Take
$$M = \mathbb{Z}/2$$

The cohomology of orbits in $\mathbb{Z}/2$ -coefficients

The (p, q) group is plotted in the box up and to the right of (p, q).

The cohomology of a point in $\mathbb{Z}/2$ -coefficients

Abbreviated pictures

- Given a C₂-manifold, goal is to understand certain Bredon cohomology classes using equivariant submanifolds
- In 2016, Dugger classified all C₂-surfaces up to equivariant isomorphism using equivariant surgery.
- Computations have been done for all C₂-surfaces in $\underline{\mathbb{Z}/2}$ and $\underline{\mathbb{Z}}$ coefficients (H.)
- C_2 -surfaces will be our examples in this talk

Example 1

Q: How do we connect the algebraic answer to the geometry of the torus and its C_2 -action?

Nonequivariant fundamental classes

- More generally, for N^k ⊂ Mⁿ smooth manifold, get fundamental class [N] ∈ H^{n-k}(M)
- Defined using the Thom isomorphism theorem for the normal bundle
- If X and Y intersect transversally, then $[X] \smile [Y] = [X \cap Y]$

Return to Example 1

Example 2

Equivariant fundamental classes

- X is a *n*-dimensional C₂-manifold and Y is a nonfree *k*-dimensional C₂-submanifold
- $[Y] \in H^{n-k,??}(X; \mathbb{Z}/2)$
- Consider the equivariant normal bundle E of Y in X
- Over each fixed point $y \in Y^{C_2}$, $E_y \cong \mathbb{R}^{n-k,q_y}$
- Let q be the maximum weight appearing over Y^{C_2}

Theorem (H.)

We get a unique class $[Y] \in H^{n-k,q}(X; \mathbb{Z}/2)$

• Defined by proving an equivariant version of the Thom isomorphism theorem

Return to Example 2

Example 3

 $T_{2,1}^{spit}$

 $[C \sqcup \sigma C]_q, [D \sqcup \sigma D]_q \in H^{1,q}$ $[C \sqcup \sigma C]_r \smile [D \sqcup \sigma D]_s = [z \sqcup \sigma z]_{r+s}$

• Have a working theory of fundamental classes with a nice intersection product

Theorem (H.)

The cohomology of all C₂-surfaces in $\mathbb{Z}/2$ -coefficients is generated by fundamental classes.

- Future question(s): equivariant analog of Steenrod's problem:
- Q: Is every class in H_{*,*}(X; Z/2) an M₂-multiple of f_{*}[M] for some manifold M and f : M→ X?

Equivariant fundamental classes in $RO(C_2)$ -graded cohomology

Thank you!