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1. Introduction

My research is in equivariant algebraic topology. Loosely speaking, algebraic topology studies
ways to assign meaningful algebraic data to geometric objects. Then we can use algebraic tools
to answer geometric questions that were otherwise inaccessible. This interplay between algebra
and geometry has led to rich mathematical results, and the tools developed in algebraic topology
continue to be useful in many areas of mathematics.

Equivariant algebraic topology studies ways to assign algebraic data to geometric objects that
have a chosen symmetry. When this assignment satisfies certain nice properties, we call it an
equivariant cohomology theory. Equivariant cohomology theories were introduced over three decades
ago [1, 24], and gained a recent resurgence of attention inspired by their use in the breakthrough
solution to the Kervaire invariant one problem [22]. Equivariant tools are also used in algebraic
K-theory computations [10, 20, 21], connecting them to algebraic geometry and number theory.
This an active and exciting area of mathematics, and equivariant theories are now vital tools in
algebraic topology.

In classical algebraic topology one of the most widely used algebraic invariants is singular coho-
mology. This theory has been studied extensively over the past century. We know how to compute
this algebraic data for a given object, and more so, we understand how certain geometric properties
are detected by the answer. The equivariant analog of singular cohomology is Bredon cohomology.
However the complexity of its algebraic outputs make computations difficult, and for many groups
of symmetries, even the Bredon cohomology of a point remains unknown.

Due to its relative complexity, many familiar results from singular cohomology have yet to be
replicated in Bredon cohomology. Much of my work focuses on Bredon cohomology for spaces
with order two symmetries, that is, spaces with an action of C2, the cyclic group of order two.
Subtleties already arise in this first nontrivial case, and C2-equivariant cohomology theories have
useful connections to other areas of mathematics, such as algebraic geometry over R (see [23, 19, 4]).

Many of my projects are motivated by two goals. One is to compute the cohomology of different
families of C2-spaces to increase our encyclopedia of examples. The second is to develop a geometric
understanding of these answers that builds our intuition and can be applied beyond the currently
known computations. These goals led to my published papers [18, 17] and my preprint [16]. See
Section 2 for a summary of my past and ongoing computational projects.

In addition to Bredon cohomology computations, I have a few collaborative projects that use
algebraic models to translate information about a given equivariant cohomology theory into the
purely algebraic world of chain complexes. In these projects we use homological algebra techniques
to prove properties about the corresponding cohomology theory. In joint work with Dugger and C.
May we use this method to prove a useful classification result for Bredon cohomology that helps
predict the types of outputs one can get from this theory. These results are in our preprint [14].
My joint work with Bohmann, Ishak, Kędziorek, and May used algebraic models to establish a
uniqueness result about another important equivariant cohomology theory, equivariant K-theory,
where the group of symmetries was any finite abelian group. These results are published in two
papers [8, 9]. Section 3 gives an overview of these projects and their future directions.

2. Bredon cohomology computations and interpretations

Given a topological space X and an abelian group A, we can consider the singular cohomology
of X in A-coefficients. This will be a sequence of abelian groups denoted by Hn(X;A) for n ∈ Z,
and the choice of coefficients tells us the cohomology of a single point. Bredon cohomology is
the equivariant analog of singular cohomology, and when the group of equivariance is the trivial
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group, Bredon cohomology coincides with singular cohomology. However both the grading and the
coefficients are more complicated for nontrivial groups.

Let G be a finite group. Recall any discrete G-set can be written as a disjoint union of orbits,
each of which is isomorphic, as a G-set, to a set of cosets G/H for some subgroup H ≤ G. In
other words, we have different types of “points” coming from the different types of orbits. The
coefficients M thus consist of a family of abelian groups M(G/H), one for each orbit G/H, as well
as various maps between them. We call this data a Mackey functor. This should be thought of as
the equivariant analog of an abelian group, and it exactly encodes the 0th Bredon cohomology of
the G-equivariant “points”. For a Mackey functor M and a G-space X, the Bredon cohomology is
then a family of abelian groups indexed by the real representation ring for G.

For C2, the cyclic group of order two, any such representation decomposes as a direct sum of
trivial and sign representations. Thus the Bredon cohomology can be regarded as a bigraded abelian
group. We write Hp,q(X;M) for the cohomology of a C2-space X with M -coefficients. The value
p is the dimension of the representation and called the topological degree, and the value q is the
number of sign representations and called the weight. You can think of this as a bigraded version
of singular cohomology, where the second grading is needed to keep track of the C2-action.

2.1. Surface computations. In my thesis I computed the Bredon cohomology of all C2-surfaces.
A C2-surface is a closed 2-manifold with a chosen order two symmetry, that is, a surface with a
continuous action by the cyclic group of order two. For example, the sphere has mirror symmetry
given by reflecting two hemispheres, and the torus has rotational symmetry given by rotating 180◦.
Figure 1 shows a few other examples of C2-surfaces where the fixed set is drawn in blue.
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Figure 1. Examples of C2-surfaces.

Dugger classified all C2-surfaces up to equivariant homeomorphism in 2016 [13]. The family of
C2-surfaces is simple enough to keep computations manageable, yet rich enough to shed light on the
geometric properties detected by Bredon cohomology. I computed their cohomology with coefficients
given by the constant Mackey functors Z/2 and Z, and furthermore found an algorithmic way to
present the answer that depends on only a few invariants of the surface and its action.

Result 2.2. [18, 16] I produced an algorithm that will give the Bredon cohomology of any C2-surface
with Z/2-coefficients and with Z-coefficients. There are sixteen different cases. In each case, the
cohomology depends only on a few properties of the C2-space, and the answer is entirely formulaic.

The rigorous statement for Z/2 is published in [18] and the statement for Z is in the preprint
[16]. My computations led me to conjecture and prove the following fact about the cohomology of
C2-manifolds of any dimension, not just surfaces. This is the equivariant version of the Poincaré
duality statement, “If X is a closed n-manifold, then Hn(X;Z/2) = Z/2 while Hj(X;Z/2) = 0 for
j > n.” Below M2 denotes the bigraded cohomology of a point with Z/2-coefficients.

Theorem 2.3. [18, Thm A.1] Let X be an n-dimensional, closed C2-manifold with a nonfree action.
Suppose n − k is the largest dimension of submanifold appearing as a component of the fixed set.
There is exactly one summand of H∗,∗(X;Z/2) of the form Σi,jM2 where i ≥ n, and it occurs for
(i, j) = (n, k).
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The computations with Z-coefficients suggest a similar statement for C2-manifolds whose under-
lying space is orientable. This is stated below. Here M denotes the bigraded cohomology of a point
with Z-coefficients.

Conjecture 2.4. Let X be an n-dimensional, closed C2-manifold with a nonfree action whose
underlying space is an orientable manifold. Suppose n − k is the largest dimension of submanifold
appearing as a component of the fixed set. There is exactly one summand of H∗,∗(X;Z) of the form
Σi,jM where i ≥ n, and it occurs for (i, j) = (n, k).

The rings M2 = H∗,∗(pt;Z/2) and M = H∗,∗(pt;Z) are bigraded, commutative, and non-
Noetherian. Thus modules over these rings can be complex and mysterious. C. May showed in
[25] that M2 is injective as a module over itself, and I used this property in the proof of Theo-
rem 2.3. However this property does not hold for M, so we cannot apply the same techniques to
solve Conjecture 2.4. Even though M is not self-injective, in many computations it behaves as
if it were. The algebraic properties of M require further investigation, and I plan to study these
properties in future projects.

2.5. Fundamental classes for submanifolds. Computing algebraic data is only one step in al-
gebraic topology. We next want to determine which geometric properties are detected with this
algebraic information. One geometric interpretation of singular cohomology involves special ele-
ments of the cohomology data called fundamental classes. Fundamental classes exist for manifolds,
and these classes give us information about submanifolds and how they intersect.

Using my computations for C2-surfaces, I was able to construct an analog of fundamental classes
in Bredon cohomology. One way to define the singular cohomology fundamental classes uses a
classical theorem known as the Thom isomorphism theorem. There are counterexamples that show
no direct analog of the Thom isomorphism theorem can exist for Bredon cohomology, at least not for
general C2-vector bundles with Z/2-coefficients. Though, based on my computations for surfaces, I
was able to conjecture and prove a weaker version of this theorem. Below is a summary of what I
proved.

Result 2.6. [17] There is a weak version of the Thom isomorphism theorem in Bredon cohomol-
ogy with Z/2-coefficients that allows one to define fundamental classes for C2-submanifolds of C2-
manifolds. These fundamental classes share many properties with the singular cohomology funda-
mental classes, including having an intersection product.

These equivariant fundamental classes give a way to geometrically interpret the C2-surface com-
putations. In future work, I plan to explore how much of this holds for coefficient systems other
than Z/2. I also plan to explore how much of this works for other groups of equivariance, starting
with cyclic groups of odd prime order.

Problem 2.7. Prove a version of the Thom isomorphism theorem for C2-vector bundles with coef-
ficients given by more general Mackey functors.

Problem 2.8. Formulate and prove a version of the Thom isomorphism theorem for Cp-vector
bundles in Bredon cohomology with Z/p coefficients.

2.9. Configuration spaces. My current computational project investigates the Bredon cohomol-
ogy of configuration spaces. Given a topological space X we define the ordered configuration space
of n points in X to be

Confn(X) := {(x1, . . . , xn) ∈ Xn : xi ̸= xj for i ̸= j}.
Note this space has an action of the symmetric group Σn given by permuting the points. The
unordered configuration space is then defined to be the orbit space Confn(X)/Σn. Configuration
spaces appear in many areas of mathematics, and their singular cohomology when X is a manifold
has been investigated in many papers, see [2, 6, 7, 11, 12] for just some examples.
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If X is a C2-space, then the configuration space inherits a C2-action. In joint work with Dugger,
we are computing the Bredon cohomology of families of such configuration spaces, starting with
configurations of points in C2-representations.

Problem 2.10. Let V be a finite-dimensional, real C2-representation. Compute the Bredon coho-
mology of the ordered and unordered configuration spaces of points in V .

In future work we plan to investigate the cohomology of configurations of points on C2-surfaces.

Problem 2.11. Let X be a closed surface with a C2-action. Describe the Bredon cohomology of the
configuration space of points in X.

3. Algebraic models

One approach to understanding a cohomology theory is to do computations and then look for
patterns. Another approach is to study the cohomology theory itself and how it interacts with
other theories. This is done using the equivariant stable homotopy category. Each cohomology
theory corresponds to an equivariant spectrum in this category. An advantage of working in this
setting is that we can use algebraic models for certain families of spectra.

3.1. Classifying modules over Eilenberg–MacLane Spectra. For a Mackey ring R, Bredon
cohomology with R-coefficients is represented by the equivariant Eilenberg–MacLane sprectrum
HR. Schwede and Shipley showed that the category of HR-modules is homotopically equivalent to
the category of chain complexes of R-modules [26]. Loosely speaking, this means we can study the
cohomology theory given by HR (so Bredon cohomology with R-coefficients) by instead working in
the purely algebraic world of chain complexes of R-modules.

C. May showed in [25] that the Bredon cohomology with Z/2-coefficients of any finite C2-CW
complex is isomorphic to a direct sum of free modules and one other type of module. This result was
surprising because the cohomology of a point is a non-Noetherian, bigraded ring, and thus modules
over this ring can be quite complicated. The strength of May’s result suggested a decomposition is
occurring on the spectrum level. Dugger, May, and I investigated this spectrum level question by
studying the category of chain complexes of Z/2-modules. We proved the following.

Theorem 3.2. [14] Every bounded chain complex of Z/2-modules is quasi-isomorphic to a direct
sum of chain complexes such that each summand is in one of four families of simple chain complexes.

From this, we were able to conclude the following result in equivariant homotopy theory.

Theorem 3.3. [14] Every compact HZ/2-module is weakly equivalent to a wedge sum of suspensions
of modules of the form HZ/2, HZ/2 ∧ Σ∞Sn

a+ where Sn
a is the n-sphere with the antipodal action,

and the cofiber of elements τ i for a fixed element τ ∈ H0,1(pt;Z/2).

In addition, we give a concrete description of the derived category D(Z/2), including computing
its Balmer spectrum as introduced in [3]. In future work, we plan to consider the following problem.

Problem 3.4. For G = Cp, understand the derived category of bounded chain complexes of Z/p-
modules and use this to give a description of compact HZ/p-modules up to weak equivalence.

If we can understand this category and prove a result similar to Theorem 3.2, then we could get a
structure theorem for Cp-equivariant Bredon cohomology that would greatly simplify computations.

3.5. Rational equivariant K-theory. A key ingredient in the solution to the Kervaire invariant
one problem was the existence of “norm maps” [22]. These norm maps encode different levels
commutativity for ring objects in the equivariant stable homotopy category. The rough idea is
that ring objects equipped with these norm maps have a commutative multiplication that is highly
compatible with the group action. When a ring spectrum has all possible norm maps we call it a
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genuine commutative ring spectrum. The goal of this project is to understand the structure of these
norm maps in important examples of equivariant cohomology theories.

Fix a finite group G. As a starting point, one can try to understand norm maps rationally using
algebraic models. Nonequivariantly, rational spectra are homotopically equivalent to rational chain
complexes. Greenlees and May gave an algebraic model for equivariant rational spectra where the
objects are products of rational chain complexes [15]. The product is indexed by conjugacy classes
of subgroups H ≤ G, and each factor also has an action by the Weyl group WGH = NGH/H where
NGH denotes the normalizer of H in G. That is, we can study rational G-spectra using the model∏

(H)≤G

Ch(Q[WGH]-mod),

where (H) denotes the conjugacy class for H.
Building on this, Wimmer gave a model for rational genuine G-commutative ring spectra [27].

Wimmer’s model includes an algebra structure on each chain complex, together with maps be-
tween subconjugate entries that respect the multiplication and the differentials. The maps between
subconjugate entries exactly encode the norm map structure.

In a joint project with Bohmann, Ishak, Kędziorek, and C. May, we use this algebraic model to
study the norm maps in equivariant K-theory. Equivariant K-theory is an important cohomology
theory that arises from considering isomorphism classes of equivariant vector bundles over a G-
space. We first computed the image of this in the algebraic model. After computing this image,
we noticed the corresponding family of chain complexes had some nice uniqueness properties. In
particular, the norm maps on the chain complexes were determined by the ring structures on the
resulting homologies. This translated to the following uniqueness result in the equivariant stable
homotopy category.

Result 3.6. [9, 8] The norm maps on rational equivariant K-theory are entirely forced by its (naive)
commutative multiplication. That is, if X is a genuine commutative ring spectrum that has the
same naive multiplication on its homotopy groups as that of rational K-theory (so forgetting the
data coming from the norm maps), then X is weakly equivalent to rational K-theory as a genuine
commutative ring spectrum.

We also showed such a uniqueness statement fails for other genuine commutative ring spectra.
For example, we showed this fails for the connective cover of rational equivariant K-theory.
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