The $RO(C_2)$ -graded cohomology of C_2 -surfaces

Christy Hazel

University of Oregon

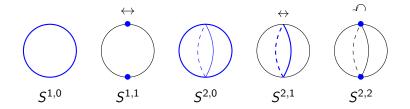
July 11, 2018

Introduction to RO(G)-graded Cohomology

- Let G be a finite group
- *G*-Top
- Given a finite-dimensional, real, orthogonal G-representation V, we can form the representation sphere $S^V = \hat{V}$
- Have equivariant suspensions $\Sigma^V X = S^V \wedge X$
- Bredon Cohomology H^α(-; M)
 - $\alpha \in RO(G)$, *M* Mackey functor
 - Have suspension isomorphisms $\tilde{H}^{\alpha}(X; M) \cong \tilde{H}^{\alpha+V}(\Sigma^{V}X; M)$

The case when $G = C_2$

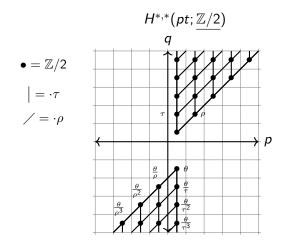
- Given a real representation V, $V \cong \mathbb{R}^{p,q} = \mathbb{R}^{p-q}_{triv} \oplus \mathbb{R}^q_{sgn}$
 - RO(C₂)-graded cohomology is a bigraded theory
- We will write $H^{p,q}(X; M)$ for $H^{\mathbb{R}^{p,q}}(X; M)$
- For representation spheres, we will write $S^{p,q}$ for $S^{\mathbb{R}^{p,q}}$



 We will be considering two coefficient systems: the constant Mackey functors Z/2 and Z

The cohomology of a point in $\mathbb{Z}/2$ -coefficients

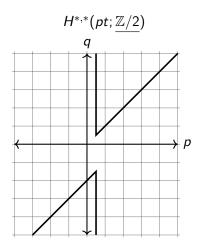
The (p, q) group is plotted in the box up and to the right of (p, q).



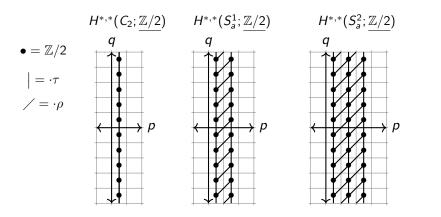
- Write \mathbb{M}_2 for $H^{*,*}(pt; \mathbb{Z}/2)$
- We have a map X o pt which makes $H^{*,*}(X; \mathbb{Z}/2)$ an \mathbb{M}_2 -module
- We are interested in $H^{*,*}(X; \mathbb{Z}/2)$ as an \mathbb{M}_2 -module

The cohomology of a point in $\mathbb{Z}/2$ -coefficients

Abbreviated drawing for \mathbb{M}_2



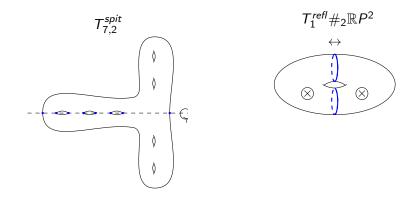
The free orbit and the antipodal spheres



• Write A_n for $H^{*,*}(S^n_a; \mathbb{Z}/2)$

. . .

Some examples of C_2 -surfaces



• In 2016, Dugger classified all C₂-surfaces up to equivariant isomorphism using equivariant surgery.

The cohomology of non-free, non-trivial C_2 -surfaces in $\mathbb{Z}/2$ -coefficients

• Let X be a non-trivial, non-free C_2 -surface

•
$$F = \#$$
 isolated fixed points, $C = \#$ fixed circles,
 $\beta = \dim_{\mathbb{Z}/2} H^1_{sing}(X; \mathbb{Z}/2)$

Theorem (H.)

There are two cases for the cohomology of X:

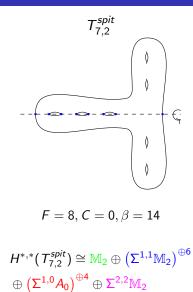
(i) Suppose C = 0. Then

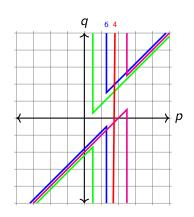
$$H^{*,*}(X;\underline{\mathbb{Z}/2}) \cong \mathbb{M}_2 \oplus \left(\Sigma^{1,1}\mathbb{M}_2\right)^{\oplus F-2} \oplus \left(\Sigma^{1,0}A_0\right)^{\oplus \frac{\beta+2-F}{2}} \oplus \Sigma^{2,2}\mathbb{M}_2$$

(ii) Suppose $C \neq 0$. Then

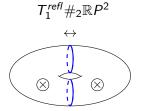
$$\begin{split} H^{*,*}(X;\underline{\mathbb{Z}/2}) &\cong \mathbb{M}_2 \oplus \left(\Sigma^{1,1}\mathbb{M}_2\right)^{\oplus F+C-1} \oplus \left(\Sigma^{1,0}\mathbb{M}_2\right)^{\oplus C-1} \\ &\oplus \left(\Sigma^{1,0}A_0\right)^{\oplus \frac{\beta+2-(F+2C)}{2}} \oplus \Sigma^{2,1}\mathbb{M}_2 \end{split}$$

Return to our examples of C_2 -surfaces



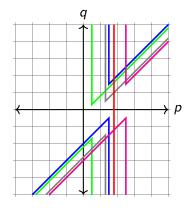


Return to our examples of C_2 -surfaces

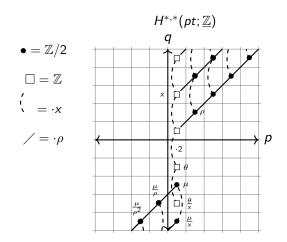


$$F = 0, C = 2, \beta = 4$$

 $H^{*,*}(T_1^{refl} \#_2 \mathbb{R} P^2) \cong \mathbb{M}_2 \oplus \Sigma^{1,0} \mathbb{M}_2$ $\oplus \Sigma^{1,1} \mathbb{M}_2 \oplus \Sigma^{1,0} A_0 \oplus \Sigma^{2,2} \mathbb{M}_2$

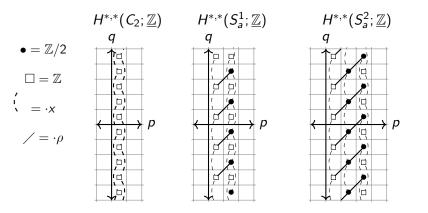


The cohomology of a point in $\underline{\mathbb{Z}}$ -coefficients



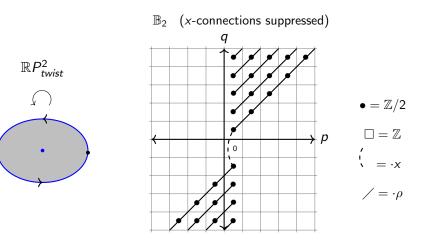
- Write M for the ring H^{*,*}(pt; <u>Z</u>)
- Want to compute $H^{*,*}(X;\underline{\mathbb{Z}})$ as an \mathbb{M} -module

The cohomology of the free orbit and the antipodal spheres

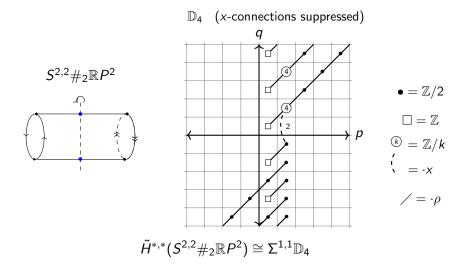


. . .

• Write \mathbb{A}_n for the \mathbb{M} -module $H^{*,*}(S^n_a; \mathbb{Z})$.



 $\tilde{H}^{*,*}(\mathbb{R}P^2_{twist};\underline{\mathbb{Z}})\cong\Sigma^{2,1}\mathbb{B}_2$



The cohomology of non-free, non-trivial C_2 -surfaces in \mathbb{Z} -coefficients

- For orientable surfaces, the answer is the "same" as in $\mathbb{Z}/2$ -coefficients; just swap \mathbb{M}_2 for \mathbb{M} and A_n for \mathbb{A}_n .
- Let X be a non-orientable surface with a non-free, non-trivial C_2 -action
 - F = # isolated fixed points
 - C = # fixed circles
 - $C_+ = \#$ two-sided fixed circles
 - $C_{-} = #$ one-sided fixed circles

•
$$\beta = \dim_{\mathbb{Z}/2} H^1_{sing}(X; \underline{\mathbb{Z}/2})$$

The cohomology of non-free, non-trivial, non-orientable C_2 -surfaces in \mathbb{Z} -coefficients

Theorem (H.)

There are three cases for the cohomology of X: (i) $(F \neq 0, C = 0)$

$$H^{*,*}(X) \cong \mathbb{M} \oplus (\Sigma^{1,0}\mathbb{A}_0)^{\oplus \frac{\beta-F}{2}} \oplus (\Sigma^{1,1}\mathbb{M})^{\oplus F-2} \oplus \Sigma^{1,1}\mathbb{D}_4$$

(ii) $(F = 0, C_+ \neq 0, C_- = 0)$
 $H^{*,*}(X) \cong \mathbb{M} \oplus (\Sigma^{1,0}\mathbb{A}_0)^{\oplus \frac{\beta-2C_+}{2}} \oplus (\Sigma^{1,0}\mathbb{M})^{\oplus C_+ - 1}$
 $\oplus (\Sigma^{1,1}\mathbb{M})^{\oplus C_+ - 1} \oplus \Sigma^{1,0}\mathbb{D}_4$

The cohomolgy of non-free, non-trivial, non-orientable C_2 -surfaces in $\underline{\mathbb{Z}}$ -coefficients

Theorem (H.)

There are three cases for the cohomology of X:

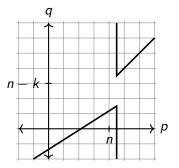
(iii)
$$(F \neq 0, C_{+} \neq 0, C_{-} = 0)$$
 or $(F \ge 0, C_{+} \ge 0, C_{-} \neq 0)$
 $H^{*,*}(X) \cong \mathbb{M} \oplus (\Sigma^{1,0} \mathbb{A}_{0})^{\oplus \frac{\beta+2-(F+2C)}{2}} \oplus (\Sigma^{1,0} \mathbb{M})^{\oplus C-1}$
 $\oplus (\Sigma^{1,1} \mathbb{M})^{\oplus F+C-2} \oplus \Sigma^{2,1} \mathbb{B}_{2}$

Next steps: General statements about manifolds with C_2 -actions

Theorem (Hogle, H.)

Any non-free C_2 -manifold X has a top dimensional \mathbb{M}_2 generated at (n, n - k)

- $n = \dim(X)$
- k = max dimension of the fixed set



- Similar statement for $\underline{\mathbb{Z}}$ if X is orientable.
- For non-orientable manifolds, there may be a similar statement with B₂ or D₄ instead of M.

Theorem (C. May 2017)

For any finite C_2 -CW complex X, we can decompose the $RO(C_2)$ -graded cohomology of X with constant $\mathbb{Z}/2$ -coefficients as

$$H^{*,*}(X; \underline{\mathbb{Z}/2}) \cong (\oplus_i \Sigma^{p_i,q_i} \mathbb{M}_2) \oplus (\oplus_j \Sigma^{p_j,0} A_{n_j})$$

as a module over $\mathbb{M}_2 = H^{*,*}(pt; \underline{\mathbb{Z}/2}).$

 Possible building blocks for a <u>Z</u> structure theorem: M, A_n, B_{2k}, D_{4k}, coker (M ^{2k+1}→ M), a couple other pieces that appear for free actions.

The $RO(C_2)$ -graded cohomology of C_2 -surfaces

Thank you!