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LATTICES
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1. Partially ordered sets

Our main object of study this summer will be transfer systems, which are special
relations on objects known as “lattices” which are examples of “partially ordered
sets”. Thus our story begins with the following definition.

Definition 1.1. A partially ordered set or poset is a set P with a relation ⪯
that satisfies the following properties:

• ⪯ is reflexive, i.e. for all x ∈ P , x ⪯ x;
• ⪯ is antisymmetric, i.e. for all x, y ∈ P if x ⪯ y and y ⪯ x then x = y; and
• ⪯ is transitive, i.e. for all x, y, z ∈ P if x ⪯ y and y ⪯ z then x ⪯ z.

We often write (P,⪯) for a poset with its relation or just write P when the relation
is clear from context.

Here are a few examples of posets to get us started.

(1) Consider the natural numbers N = {0, 1, 2, 3, 4, . . . } with the relation given
by the usual less than or equal ordering ≤ so

0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ . . .

In a similar vein, if we take any natural number n and define [n] :=
{0, 1, 2, . . . , n} then [n] is a poset with ordering 0 ≤ 1 ≤ · · · ≤ n.1

(2) Let n be a positive integer and define Dn to be the set of positive divisors
of n. Then Dn is a poset under the relation d1 ⪯ d2 if and only if d1 | d2.
For example D12 = {1, 2, 3, 4, 6, 12} and we have 1 ⪯ 2, 2 ⪯ 6, 3 ⪯ 6. But
note 2 ̸⪯ 3. We call this the divisor poset for n.

(3) For a positive integer n define Bn to be the set of all subsets of {1, 2, . . . , n}.
Then Bn is a poset with the relation given by subset inclusion ⊆. We call
Bn a Boolean lattice (this naming convention will make more sense after
Example 1.9).

Remark 1.2. We’ve been using the funny-looking less than or equals symbol ⪯
to emphasize the relation is not necessarily the usual “less than or equal” ordering
coming from the real numbers. But it is typical for authors to still use ≤ for an
abstract relation on a poset and to read the symbol as “less than or equal to”.
We will also adopt this convention from now on, writing ≤ instead of ⪯ for an
abstract relation on a poset P . Be careful that ≤ does not always mean ordering
of numbers though! (This is similar to how we use multiplicative notation ∗ or ·
and say “times” for an abstract binary operation in group theory.)

1Warning: Some authors write [n] for the set {1, 2, . . . , n}. We are going to follow the conven-
tion in work of Balchin-Barnes-Roitzheim and have [n] = {0, 1, 2, . . . , n}.
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Suppose (P,≤) is a poset. We adopt the following notation and terminology for
convenience.

• For x, y ∈ P we write x ≥ y if and only if y ≤ x.
• For x, y ∈ P we write x < y if and only if x ≤ y and x ̸= y.
• For elements x, y ∈ P we say x and y are comparable if x ≤ y or y ≤ x.
Otherwise we say x and y are incomparable.

In the poset (N,≤) any two elements are comparable, but this need not be true for
general posets. For example {1, 2} and {2, 3} are elements of B3 but {1, 2} ̸⊆ {2, 3}
and {2, 3} ̸⊆ {1, 2}. Thus {1, 2} and {2, 3} are incomparable elements of B3.

Example 1.3. We can find more examples of posets from abstract algebra. Let
G be a group and write Sub(G) for the set of all subgroups of G. Then Sub(G)
has a relation given by subgroup inclusion (so H ≤ K if and only if H is a subset
of K). This relation on Sub(G) forms a poset. Subgroup posets will be especially
important for us when we investigate transfer systems.

As a concrete example, suppose G = C8 = ⟨t⟩ where t is an element of order 8.
(So C8 is a cyclic group generated by t. Note C8 has 8 elements.) Then

Sub(C8) = {{e}, {e, t4}, {e, t2, t4, t6}, C8}.
Note any two elements from Sub(C8) are comparable. What happens if G = C6 =
⟨t⟩ where now t has order 6? Can you find all elements of Sub(C6)? Are any two
elements comparable?

We introduce a few more helpful pieces of terminology and notation for posets.

Definition 1.4. Suppose (P,≤) is a poset. If Q is a subset of P then we say (Q,≤)
is a subposet of (P,≤). Note it is important that the relation on Q is the same as
the relation on P .

For any natural number n, note [n] is a subposet of N. Similarly for positive
integers n ≤ k, one can check that the Boolean lattice Bn is a subposet of Bk.

Consider the divisor poset D12. Note the set D12 is a subset of N, but it is not
considered a subposet of N because the sets have different relations.

Definition 1.5. Let (P,≤) be a poset and x, y ∈ P . We write [x, y] for the interval
from x to y which is defined to be the set

[x, y] := {z ∈ P | x ≤ z ≤ y}.

Definition 1.6. Given posets (P,≤P ) and (Q ≤Q) we can form the product
poset P ×Q which consists of the set of all ordered pairs (x, y) where x ∈ P and
y ∈ Q with relation ≤ given by

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤P x2 and y1 ≤Q y2.

(It’d be good to pause here and think through why P ×Q really is a poset! )

Example 1.7. Consider [1]× [1]. As set we have

[1]× [1] = {(0, 0), (0, 1), (1, 0), (1, 1)}
and we have

(0, 0) ≤ (0, 1) ≤ (1, 1) and (0, 0) ≤ (1, 0) ≤ (1, 1),

while (0, 1) and (1, 0) are incomparable.
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We can generalize the product construction to form the product poset of any
finite number of posets. If we are taking the product of a poset P with itself n
times, then we write Pn for the poset P × P × · · · × P︸ ︷︷ ︸

n times

.

We end this section with a notion of what it means for two posets to be the
“basically the same”. As we often see in abstract algebra, “same” will mean there
exists a bijection that preserves the poset structure.

Definition 1.8. Let (P1,≤1) and (P2,≤2) be two posets. A function f : P1 → P2

is an isomorphism of posets if f is a bijection and for all x, y ∈ P1,

x ≤1 y ⇐⇒ f(x) ≤2 f(y).

We say (P1,≤1) is isomorphic to (P2,≤2) if there exists an isomorphism of posets
between them. In this case we write P1

∼= P2.

Example 1.9. We show [1] × [1] ∼= B2. Recall B2 is the set of all subsets of the
two-element subset {1, 2}. We define a function f : [1] × [1] → B2 by using each
ordered pair (x, y) ∈ [1]× [1] as a “recipe” to build a subset of {1, 2} in the following
way. If x = 0 then we do not include 1. If x = 1 then we do include 1. Similarly if
y = 0 then we do not include 2, and if y = 1 then we do include 2. Explicitly we
have

f((0, 0)) = ∅, f((0, 1)) = {2}, f((1, 0)) = {1}, f((1, 1)) = {1, 2}.
Observe f respects the ordering of both posets, and so we have that f is a poset
isomorphism. In the exercises below you’ll generalize this to show [1]n ∼= Bn.

Example 1.10. Consider the poset [3] = {0, 1, 2, 3} where 0 ≤ 1 ≤ 2 ≤ 3. Define
a function

f : [3] → Sub(C8), f(i) = ⟨t2
3−i

⟩.
That is, 0 7→ {e}, 1 7→ ⟨t4⟩, 2 7→ ⟨t2⟩ and 3 7→ ⟨t⟩. You can check that f does
indeed give an isomorphism of posets.

Proposition 1.11. The relation “is isomorphic to” is an equivalence relation on
posets.

Proof Outline. We need to prove that the relation “is isomorphic to” is reflexive,
symmetric, and transitive. We outline how to show each step and leave the details
to the reader.

To show reflexivity, it is enough to show the identity function is a poset isomor-
phism. To show symmetry, it is enough to show that if f : (P1,≤1) → (P2,≤2)
is a poset isomorphism then the inverse function f−1 : (P2,≤2) → (P1,≤1) is
also a poset isomorphism. Finally for transitivity, it is enough to show that if
f : (P1,≤1) → (P2,≤2) and g : (P2,≤2) → (P3,≤3) are both poset isomorphisms
then the composition g ◦ f : (P1,≤1) → (P3,≤3) is a poset isomorphism. □

2. Hasse diagrams

Given a finite poset P there is a nice way to visualize the relations in P using a
directed graph. One way to get such a graph is to have a vertex for each element
in P and an edge from vertex x to vertex y whenever x ≤ y. But if you try
drawing such a graph for our examples, you’ll see it can get messy pretty quickly.
Furthermore a lot of the edges have redundant information. For example if x ≤ y
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and y ≤ z then we already know x ≤ z because ≤ is transitive, so the edge from
x to z isn’t providing any new information. We thus seek to produce a directed
graph that includes a minimal amount of necessary information to encode P . This
is done by recording what are known as “covering relations”.

Definition 2.1. Suppose (P,≤) is a poset and x, y ∈ P with x ≤ y. We say x ≤ y
is a covering relation if x < y and there does not exist z ∈ P with x < z < y. In
this case we say y covers x or x is covered by y.

Given the covering relations on P we get all relations by noting that x ≤ y if and
only if x = y, y covers x, or there exist elements z1, . . . , zn and a string of covering
relations x < z1 < z2 < · · · < zn < y. Hence if you know all of the covering
relations of a poset P , then you can determine all relations in P .

Definition 2.2. The Hasse diagram for a poset (P,≤) is the directed graph
whose vertex set is P and whose edge set is given by the covering relations of P .
Concretely, we have a directed edge x → y if and only if x < y is a covering relation.

We will draw our Hasse diagrams so that bigger elements are on top or to the
right of smaller elements, as you’ll see in the examples below. Our edges always
flow up and to the right, and thus we often don’t include the arrows on the edges.

Example 2.3. The Hasse diagrams for [1], [3], and more generally, [n] are shown
in Figure 1. The Hasse diagrams for B2 and B3 are shown in Figure 2. We leave it
as an exercise for you to fill in the labels on the vertices in these two diagrams.

•0

•1

•0

•1

•2

•3

•0

•1

•2

...

•n− 1

•n

Figure 1. Hasse diagrams for [1], [3], [n].

•

•

•

•

•

•

•

•
•

••

•

Figure 2. Hasse diagrams for B2 and B3
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3. Lattices

We will be especially interested in lattices, which are posets that have nice no-
tions of least upper bounds and greatest lower bounds. We make these ideas precise
below.

Definition 3.1. Let (P,≤) be a poset and x, y ∈ P . A join of x and y is an
element z ∈ P such that x ≤ z, y ≤ z, and if w ∈ P is any other element in P such
that x ≤ w and y ≤ w, then z ≤ w.

Proposition 3.2. For x, y in a poset P , if a join of x and y exists then it is unique.

Proof. We leave this an exercise. □

Thus, if it exists, we refer to a join of x and y as the join of x and y, and we
write x ∨ y for the join of x and y.

The join is also called the “least upper bound” of x and y (if you’ve taken
analysis, you might recognize this phrase!). For example, in B5 the join of {1, 2, 3}
and {2, 4} is the set {1, 2, 3, 4}–this is the smallest set that contains both {1, 2, 3}
and {2, 4}. More generally the join of two elements in Bn is given by their union.

Definition 3.3. Let (P,≤) be a poset and x, y ∈ P . A meet of x and y is an
element z ∈ P such that z ≤ x, z ≤ y, and if w ∈ P is any other element in P such
that w ≤ x and w ≤ x, then w ≤ z.

Proposition 3.4. For x, y in a poset P , if a meet of x and y exists then it is
unique.

Proof. We leave this an exercise. □

If it exists then we write x ∧ y for the meet of x and y. The meet is also called
the “greatest lower bound” of x and y. Going back to our example in B5, we have
that the meet of {1, 2, 3} and {2, 4} is the set {2}–this is the largest set that is a
subset of both {1, 2, 3} and {2, 4}. In general the meet of two elements in Bn is
given by their intersection.

Note meets and joins need not always exist. Take for example the poset P =
{α, β, γ} whose Hasse diagram is given below.

•α•β

•
γ

The meet of α and β is given by α ∧ β = γ. But the join α ∨ β does not exist
because there are no elements comparable to both α and β.

Definition 3.5. A poset L is called a lattice if for all x, y ∈ L the join x ∨ y and
the meet x ∧ y exist in L.

The poset P = {α, β, γ} given above is an example of a poset that is not a
lattice.

Example 3.6. The following posets are examples of lattices.

(1) The Boolean lattice Bn is indeed a lattice. Meets are given by intersections
and joins are given by unions.
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(2) The poset [n] is a lattice. The meet of two numbers is just given by the
minimum while the join is given by the maximum.

(3) Given any positive integer n, the divisor poset Dn forms a lattice. How do
you describe meets and joins in this case?

(4) Given a group G the subgroup poset Sub(G) forms a lattice. Recall the
intersection of any two subgroups is again a subgroup. Thus meets are given
by intersections. However it is not true that the union of any two subgroups
is again a subgroup, so joins are a bit more complicated to describe. If H
and K are subgroups of G such that at least one of them is normal, then
the join is given by the set

HK = {hk | h ∈ H, k ∈ K}.

(One needs to prove this subset is actually a subgroup and is the smallest
subgroup containing both H and K.) If both H and K fail to be normal,
then the join is the subgroup generated byH andK, which can be described
as the intersection of all subgroups of G that contain both H and K.

We end with one more definition and nice feature of lattices.

Definition 3.7. Given a poset (P,≤) we say an element m ∈ P is a minimal
element or minimum if for all x ∈ P , m ≤ x. We say m ∈ P is a maximal
element or maximum if for all x ∈ P , x ≤ m.

Proposition 3.8. Let L be a finite lattice (so a lattice whose underlying set is
finite). Then L has a unique maximal element and a unique minimal element.

Proof. This is Exercise (12a). □

Given a finite lattice L we will often write ⊤ for the maximal element and ⊥ for
the minimal element.

4. Exercises

(1) Consider the Boolean lattice B5. For each pair X,Y of sets below, list the sets
in the interval [X,Y ].
(a) X = {1, 2}, Y = {1, 2, 4, 5}
(b) X = {1, 2}, Y = {2, 3, 4}
(c) X = ∅, Y = {1, 2, 3}

(2) Fill in the vertex labels for the Hasse diagrams in Figure 2.
(3) Generalize Example 1.9 by showing for all positive integers n, [1]n is isomorphic

to Bn.
(4) Let n be a positive integer. Draw the Hasse diagram for [1]× [n].
(5) Let K denote the Klein-4 group, so K = Z2 × Z2. Write down all elements of

Sub(K). Then draw the Hasse diagram for Sub(K).
(6) (a) Draw the Hasse diagram for the divisor lattice D24.

(b) Let p and q be distinct prime numbers and let r be a positive integer.
Draw the Hasse diagram for the divisor lattice Dprq.

(7) Let D24 denote the divisor lattice for 24. Prove that [1] × [3] is isomorphic to
D24.

2

2If you have extra time, try to generalize this example in whatever way seems natural to you!
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(8) Generalize Example 1.10 in the following way. Show for all primes p and for
all positive integers n, [n] is isomorphic to Sub(Cpn). (You’ll need to brush off
some abstract algebra here. You might start by reviewing how to describe all
subgroups of a cyclic group.)

(9) For a positive integer n describe how to find meets and joins in the divisor
lattice Dn.

(10) Prove that if the posets (P,≤P ) and (Q,≤Q) are lattices then P×Q is a lattice.
(11) Let n be an integer with n ≥ 2. Write down a definition for the meet and then

for the join of n elements from a poset P . (You should write a definition that
doesn’t reference the meet/join or two elements.)

(12) (a) Suppose P is a finite lattice. Prove that there exists a unique maximal
and a unique minimal element in P . (This is Proposition 3.8.)

(b) Give an example of an infinite lattice that has a maximal element but no
minimal element.
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